Tag Archives: videos

Transport across Cell Membranes


In Year 11 we will be concentrating on passive transport across cell membranes, diffusion and osmosis. In Year 12 we will learn more about active transport across cell membranes, which requires the cell to use energy (ATP). There are various forms of active transport across membranes, including:

  • exocytosis (out of the cell)
  • endocytosis (into the cell)
  • phagocytosis (solids, like bacteria or other foreign materials)
  • pinocytosis (liquids)

Today in Year 11, we completed an experiment using cores of potato in several different concentrations of sugar solution. Weighing the potato discs before and after the experiment, we expected the samples placed in distilled water would increase in mass (due to water moving into the cells by osmosis) and the samples placed in concentrated sugar solution would decrease in mass (due to a net movement of water out of the cells). We also used microscopes to observe thin sections of rhubarb, demonstrating how the cell membrane shrinks away from the cell wall when placed in concentrated sugar solution.

In Year 12, we took identical cores of beetroot and placed them into distilled water in test-tubes in water baths of different temperatures (frozen beetroot core, room temperature, 50C and 70C). After 30 minutes, the beetroot cores are removed and the colour of the remaining water is observed. From this, you can infer that the damage to the cell membrane at 70C is greatest, because the greater amount of pigment has been released from the beetroot cells, giving the water a darker pink colour. Some pigment was also released from the frozen core and at 50C, indicating that the cell membrane has ruptured.


Biological macromolecules: Nucleic acids

Biomacromolecules – Nucleic acids and proteins (Part A) from GTAC

Biomolecules – Nucleic acids and proteins (Part B) from GTAC

Nucleic acids (DNA and RNA) are the next group of macromolecules that we are looking at. Nucleic acids are made up of monomer units that consist of a phosphate group, a sugar unit and a nitrogenous base. The nitrogenous bases in DNA are Thymine (T), Adenine (A), Guanine(G) and Cytosine (C). In RNA, the Thymine (T) is replaced by Uracil (U). Thymine (or Uracil in RNA) always pairs with Adenine (2 hydrogen bonds) and Guanine always pairs with Cytosine (3 hydrogen bonds).