Tag Archives: proteins

Week 2: Proteins

Enzyme_mechanism_1

Image Source

Proteins are polypeptides or chains of peptides (amino acids) joined together by peptide bonds. These large organic molecules have four levels of structure –

  1. Primary – order of amino acids in the chain
  2. Secondary – alpha-helices, beta-pleats and random coils
  3. Tertiary – the folding of the chains due to the presence of disulphide bonds
  4. Quarternary – when two or more polypeptide chains are folded together in a complex molecule

Enzymes are a specific type of protein that play a critically important role in living organisms. The molecules in cells are constantly interacting – being broken down, built up or exchanged. These chemical reactions constitute an organism’s metabolism. An organism is regulated and the rate of it’s chemical activity is maintained by these special proteins, known as biological catalysts. Like all proteins, enzymes are made in the ribosomes by linking together specific amino acids in the cytoplasm, according to the DNA code. Each cell contains and needs a very large number of different enzymes, but not all cells produce all enzymes – it depends on the structure and function of the cell as to which genes are ‘switched on’.

  • Enzymes are proteins and are therefore made up of amino acids (containing carbon, hydrogen, oxygen and nitrogen)
  • Enzymes are ‘biological catalysts’ because they speed up the rate of a chemical reaction
  • Enzymes remain unchanged at the end of the reaction (not used up)
  • Enzymes are only required in small amounts
  • Enzymes are highly specific (one enzyme catalyses one type of reaction)
  • Enzymes work best under optimum conditions of temperature and acidity
  • Enzymes are ‘denatured’ (destroyed) by heat and sensitive to pH
  • Enzymes work like a key fits into a lock – their shape complements the shape of the substrate materials.
  • The ‘active site’ of a particular enzyme has a specific shape into which only one kind of substrate will fit
  • Enzymes may need ‘co-enzymes’ (specific vitamins) or ‘co-factors’  (minerals) to help functioning

Exploring Protein Structure with GTAC

Screen Shot 2015-02-20 at 2.30.49 PM

The Gene Technology Access Centre have some excellent resources for VCE Biology, including this slideshow and activity sheets “exploring protein structure“.  The image above is one view of a representation of the enzyme amylase, which breaks starch down into sugars. You can see the green alpha-helices, yellow beta-sheets and blue random coils in the secondary structure of this protein. You may also be able to see the ‘co-factors’ or molecules which assist at the active site of this enzyme. Amylase relies on the co-factors calcium and chloride to function efficiently. What are the dietary sources of calcium and chloride?

View the GTAC Bioinformatics Task 4 Presentation and then complete student worksheets #1 and #2. You will need to download the Cn3D software to view the interactive protein molecules.

 

The effects of temperature and pH on enzyme function.


At the Gene Technology Access Centre on Monday we spent the day learning about the structure and function of enzymes. As well as a lecture and practical experiment, we had the opportunity to use a computer program for protein modelling. GTAC has some great online resources for teaching and learning, including this slideshow about Enzyme Action.

Enzymes have specific characteristics:
– enzymes are proteins, made up of amino acids
– enzymes have specific primary, secondary and tertiary structures
– enzymes are specific to substrates
– enzymes are biological catalysts (they speed up a reaction)
– enzymes have optimum temperature and pH ranges
– enzymes are not changed or used up in a reaction
– enzymes have an active site, which is where the substrate is broken down or the products are made
– enzymes can contain co-factors (ions, such as chlorine or calcium) that assist to attract the reactants to the active site

We worked with amylase, an enzyme that breaks starch down into disaccharides. We used iodine to indicate the presence of starch and a photo spectrometer to measure the degree of staining of the medium. The higher the photo spectrometer reading, the more starch, which meant the less enzyme action. We stopped the reaction using an acid, which denatures the enzyme and prevents the break down of starch. Our results showed that the optimum temperature of amylase activity was about 40 degrees and the optimum pH was 6. This is what you might expect from human amylase, which would be working at normal body temperature (37 degrees) and neutral (or slightly acidic) pH in the mouth.

Biological macromolecules: Nucleic acids

Biomacromolecules – Nucleic acids and proteins (Part A) from GTAC

Biomolecules – Nucleic acids and proteins (Part B) from GTAC

Nucleic acids (DNA and RNA) are the next group of macromolecules that we are looking at. Nucleic acids are made up of monomer units that consist of a phosphate group, a sugar unit and a nitrogenous base. The nitrogenous bases in DNA are Thymine (T), Adenine (A), Guanine(G) and Cytosine (C). In RNA, the Thymine (T) is replaced by Uracil (U). Thymine (or Uracil in RNA) always pairs with Adenine (2 hydrogen bonds) and Guanine always pairs with Cytosine (3 hydrogen bonds).

DNA_Nucleotides

Enzymes – catalysts of digestion!

Photo Source

These pitcher plants and other ‘carnivorous’ plants produce digestive enzymes that can break down the flesh of small invertebrates, such as flies, spiders and ants. Often they grow in soil that is deficient in specific inorganic nutrients, such as nitrates and phosphoros, and can get these essential elements from the dead animals that are attracted by sweet and sticky liquids.

The main things to remember about enzymes are:

  1. Enzymes are proteins and biological catalysts.
  2. They are not used up in the reaction – only a small amount of enzyme is needed for each reaction.
  3. They do not change the amount of product formed
  4. They speed up a reaction, but do not change the direction of the reaction.
  5. They are very specific to their substrate and are often named according to the chemicals they work on.
  6. Enzymes, being proteins, are sensitive to heat, pH and heavy metal ions. When heat is applied the proteins are ‘denatured’ and no longer work. 

In the human body there are several different enzymes including:

  • Amylase which works on starch
  • Maltase which works on maltose
  • Sucrase which works on sucrose
  • Lipasewhich works on lipids (Fats) and
  • Pepsin which works on polypeptides (Proteins)

More about Enzymes from Wikipedia here. Award-winning Enzyme Investigation here. Andrew Douch, a Biology teacher from Wanganui Secondary College, has produced many Biology podcasts, for students to learn about different topics – here is a link to his “Enzymatic” podcast. Andrew has also included some notes about enzymes here. Experiment with enzymes in liver here.