Daily Archives: February 4, 2010

Investigating Osmosis with Chicken Eggs

egg with shell removed

Photo Source

This week’s practical experiment involves using chicken’s eggs as a model for the cell – even though the egg is not a single animal cell, it is a good model because it has a semi-permeable membrane that shows the effect of  osmosis on animal tissue. 

“The plasma membrane of the cell is essential for separating the extracellular and intracellular environments. Made of a semipermeable bilayer of phospholipids embedded with proteins, the plasma membrane acts as a molecular gatekeeper to prevent certain substances from crossing, while granting access to others. Simple elements and compounds, like water, oxygen, and carbon dioxide may easily pass through. Larger, more complex molecules like carbohydrates and proteins must seek aid from the carrier proteins within the bilayer in a process known as facilitated diffusion.

Diffusion is the movement of molecules down a concentration gradient from an area of higher concentration to an area of lower concentration. Simple diffusion is an example of passive transport, which occurs without energy input from the cell. Similarly, osmosis, or the movement of water molecules across a membrane from an area of higher concentration to an area of lower concentration, does not require energy input from the cell. Cells existing in an extracellular environment that has a higher solute concentration than inside of the cell are in a hypertonic solution. When the extracellular solute concentration is lower than intracellular solute concentration, the cell exists in a hypotonic solution. In an isotonic solution, the extracellular and intracellular solute concentrations are the same.” from http://www.sd5.k12.mt.us/ghs/sci/young/documents/Lab–EggOsmosis.pdf

In this experiment, which solutions will cause water to move into the egg (cell) and which solutions will cause water to move out of the egg?

More pictures of this experiment here: An Egg-sellent Osmosis Experiment